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1. Introduction

Many electrical (and for that manter nonelecmical) devices, including mi-
crowave sources [1], lasers [2]. solid-state microwave oscillators, and elec-
tronic circuits [3], exhibit chaos when pushed to high power levels. The
presence of chaos in these devices can limit their efficiency and usefulness.

Recently, several experimental groups have demonstrated that it is possible
to control chaos in physical devices [2] with tiny perturbations using con-
trol methods that are based on the fundamental technique proposed by O,
Grebogi, and Yorke [4]. A recent Army Research Labomatory (ARL) techni-
cal report [5] discusses the use of tiny-perturbation conwol for the transmus-
sion of information using chaotic dynamics. The infermation is embedded
in the symbolic dynamics of the contolied chaotic trajectory. (The original
idea for controlling chaos using tiny perturbationsinvolved the stabilization
of the periodic orbits that are embedded in the auractor of a chaotic dy-
namical system.)

In this report I develop a technique for controlling the symbolic dynamics
[6] of chaos for the synthesis of time-limited waveforms (pulses) and for
the synthesis of power spectra with desired properties. This technique is in-
tended for the formation of pulses in high-power devices using tiny micro-
electronic control circuitry, so the power generation device is cxtremely
simple and efficient, while the control device is compact, low-powered, and
fast.

The technique for forming pulses, like the technique for information trans-
mission, relies on the concept of controlling the symbolic dynamics of a
chaotic system. (One can view the control of periodic orbits as control of
orbits with cyclic symbolic dynamics, the transmission of information as
control of orbits with aperiodic and stationary symbolic dynamics, and
pulse formation as control of orbits with transient symbolic dynamics.)

In this report the concept of spectral shaping in a chaotic dynamical system
1s also introduced. The obtainable spectrum is constrained by the dynamics
of the system (the tiny-perturbation control does not alter the basic topo-
logical structure of the atractor), and is related to pulse formation. It is pos-
sible to alter the spectrum of a chaotic system with ergodic and stationary
dynamics, but in this report I limit the discussion of spectral shaping to
pulse waveforms. Both ideas introduced here therefore concem the use of
chaos to generate a signal class that has not been addressed previously in
the context of chaos cortrol: the transient time-limited signal. In addition to
the time sequence pulses, and the spectra, I also include graphs of sinusoi-
dal waveforms that have an amplitude modulation described by a linearly
interpolated continuous-time version of the pulse waveforms. These graphs
are intended to illustrate the appearance of intensity (amplitude) modulation




chaos and controlled chaotic puises cf intensity modulation. Microwave
sources and lasers, among other devices, are known to exhibit this type of
chaos. (The band-limited chaos that appears in these devices is more likely
to be ooth phase and amplitude modulation.)

Because different dynamical systems have attractors with different topo-
logical structures in state space, the exact description of a chaotic system
depends strongly on the specific system under study. Useful descriptions of
chaotic dynamical systems for control a!most without exception rely on the
extraction from measured data of a simple return map (a discrete-time de-
scription of the dynamics) for a Poincaré surface of section in state space. |
therefore limit the discussion here to a specific discrete-ime dynamical sys-
tem—the shift map {7]. (The relationship between a symbolic shift and a
physical system has already been addressed, and an experiment is planned
1o demonstrate information transmission using this reladonship {5]. This re-
port therefore concentrates on the symbolic description. The chift map itself
approximately describes the Lorenz [8] three-dimensiona continuous-time
dynamical system for the commonly used parameter values, and its basic
properties appear in many other systems.)

The so-called double-scroll electrical oscillator that we have constructed in
our laboratory, aithough a nonhyperbolic system of two collided Rossler
attractors, can be described by one-dimensional mapping that is similar to
the shift in the ways that are imponant for this discussion. More complex
systems require the derivation of a symbolic system description from meas-
urements; again, this technique has already been addressed {5]. More com-
plex systems, including the double-scroll system, should provide even more
flexibility in waveform synthesis.
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2. Background

The shift map dynamical system [7] is described by the equation x| = 2x,
mod 1. It can thertiore be described as follows in terms of a binary sym-
bolic dynamics. If the current state of the map is x_ = 0.5,4,b,... in a binary
fraction decimal representation,* then the shifi is alternatively described by
a shift-and-truncate operation on the binary fraction representation of the
state point. To obuain x,,,. simply shift the bits in the binary fraction for x,
to the left by one place, and discard tne bit that ends up to the left of the
decimal point. Thus, x,,, =0.5,b,b,... . The equation x,,, =2x, mod1 can
thus be replaced by the alternatdve model of a simple bit shift operating on
an infinite binary siring. (The relation between a symbolic dynamical sys-
tem and a physical electrical oscillator dynamical system has been demon-
strated in the context of information transmission [5], so I concentrate on
the symbolic system here.)

This alternative symbolic description is appealing both from an intuitve
and an analytical standpoint: It is easy «o visualize and easy to coastruct ini-
tial points that yield a desired dynamics. If the system state poiat falls in the
interval {0,1/2), the system is sai~ to generate a binary symbol 0, and if the
state point falls in [1/2,1], the system is said to generate a 1. Now the first
bit in the binary fraction for the state point detenaines which of these inter-
vals the state point falls in, and t™e action of the shift is to move all the bits
to the left one space for each iteration of the map. The symbol sequencc
generated by this map, in binary fraction notation, is therefore precisely the
same as the binary fraction representation of the system state point. Thus,
denoting the system symbolic state by r, the symbolic state is related to the
state space state by the identity function 7(x) = x. One can therefore specify
the symbolic dynamics by simply setting the bits in the binary fraction for
the initial point to the desired symbolic dynamics.

In other systems, however, the system state and the symbolic state will be
related by a function other than the idendty. (in the Lorenz system, for ex-
ample, r(x) is practically continuous and monotonic, but is not the identity.
It can, however, be runsformed into the identity using 2 continuous mono-
tonic coordinate change.) The problem of specifying a time-limited wave-
form is now reduced to the task of specifying the bits in the binary fraction
for the initial point x. This conceptual abstraction js justified in view >f the
fact that with tiny controls the symbol sequence that evolves from the sys-
tem can be viewed as emerging from the bits that are altered below the
threshold of observability.

*Briefly. if the i** place behind the decimal point is given by the binary digit (bit) b,, then he state point of the mag
isx=37 1b‘.2". Each real number is thus identified with an infinite binary string, and vice versa.
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First, for completeness and comparison, 1 briefly describe the natural dy-
namics and spectrum of the shift map. The natural invariant probability
density for the shift [7] is simply the unifcrm density on the interval. The
correlation function for the shift map signal is computed using the formula

1
Clmy= [ aptx)f=(x) da - ELs,

where f”(x) is the m” iterate of the map, and E[x)? = 1/4 is the squared
mean value of the signal. The correlation fencton is computed 0 be C{m) =
(1/12)2°". (The correlation function evaluated for m =0 is equal to 1/12,
the variance of a vniformly distributed random variabie on the unit inter-
val.) The unnormalized power spectral dencity is the Fourier transform of
the autocorrelation funcdon,

S(w)= iC(m)e“""‘.

L el ]

The unnormalized power spectral density is given by S(w) =
(1/4)/(5 - 4 cos w). This power spectral density, because it is for a discrete-
time signal (2 sequence of numbers), is periodic with period 2x. Note that
the power deusity for this signal, because it is not delta correlated, is more
band limited than that of a uniform random variable, which has a flat spec-
trum because it is delta correlated. Figure 1(a) shows a time sequence of
100 points generated by the natural dynamics of the shift. The power spec-
tral density, normalized so that the integrated spectral power is unity, is
shown in figure 1(b). A waveform with amplitude modulation described by
this time sequence with a direct linear interpolation between sequence
points is shown in figure 1(c).

The waveform in figure 1{c) is described by x ¢ (D =x(1) sin (10 m), so that
the frequency of the modulated waveform is five times the sample fre-
quency. The baseband time waveform, x(#), is obtained using a lincar inter-
polation between sample points. The use of waveforms such as sinc
functions or Nyquist pulses has been avoided because these bases derive
from linear signal theory [9]. In general, the best basis to use to reconstruct
a time-sampled chaotic trajectory is precisely the curve that projects the ma-
jectory from the current sample point to the next one on the surface of sec-
tion. In this case, the system does not refer to a continuous time system, so
the choice of basis is arbitrary, and I have used a particularly simple one.




Figure 1. () 100-point
sequence generated by
natural dynamics of
map Xpep = 2x, mod 1,
(b) power spectral
density, and

{¢) mouulation
waveform,
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3. Forming a Pulse

Because we can describe any alloxed dvnamical motion of this system by
specifying the bits in the binary fracu a2 for an inital point (and thus the
symbolic future of the system), | con.: =7 pulses of the following form. As-
sume that the sysiem is first in the olf <iziz or approximately so. That is,
the inidal point is x, = 0.000 ... 00Cb.b... 5., ... a long suring of zeros fol-
lowed by a bit sequerce to be specified. If te :niual string of zeros is long
enough, then the sysiem can be considered 1 be locked to the off statz by
an extremely tiny control that simply kicks the sysizm back toward zero as
the shift dynamics tries to move it away. This would cormespond, ia a physi-
cal system or device, to locking the system in 3 stauc bul unsiable equilib-
rium state, called an unstable fixed point. I also consider that the sysiem
eventually is returned, after emission of the pulse. to the off stie Thus, the
most general form for a pulse of this type is specified by the 1mnial point (or
symbol sequence) x, = 0.0 P70~, where 0¥ denotes a precursor sing of
zeros of length N, 07 represents an infinit= tail string of zeros, and P7 is an
arbitrary string of ones and zeros of integer length T representing the pulse
bits. I assume that the precursor string 0¥ is arbitrarily long for computa-
tional purposes, so that the sysiem is very close to the off s:ate before the
pulse is initiated.

The problem now is simply 1o specify the pulse string PT. The simplest
pulse that can exist occurs when PT = I; that is, the pulse string is one bit
fong and is given by the binary digit 1. 1 will call this the unif pulse, for ob-
vious reasons, but it should not be confused with the unit amplitude impulse
in linear signal theory {91 This unit pulse, as will be shown, is a growing
exponential. It is straightforward to describe the pulse amplitude as a func-
ton of time (in this case the integer” index 1): Because the single pulse bit is
at first deep in the number x,, the system state is initially off (practically).
As the long stning of zeros in the precursor, with the one bit deep inside, get
shifted out (10 the left), the system state begins to move away from off.
Equivalently, the signal amplitude builds from zero and grows exponen-
tially. The shifting of this one bit from deep inside the number 10 succes-
sively higher significant bit slots means that the pulse signal as a function of
timeis givenby x,=1/22,1<0;and x,=0,1>0.

If I define the step function s, to be unity for 1 £ 0, and zero for 1 > 0, the unit
pulse can be writien us 4, = 2'”'s, The pulse amplitude thus builds up expo-
nentially with time, and then cuts off abruptly at 2 = 0. This dynauiics is
portrayed graphically in figure 2, which shows the graph of the shift map

*I will use the variable tto represent the discrete-time index, instead of g commoniy used integer variable ike n. I will
also use the terminology waveform when referring to the sequence generated by the shift map. Both of these uncon-
veniional usages were chosen to avoid referring 1o the sequence generazed by the shift as a signal. which has the con-
nrotation of information transmission and signal processing. This note deals with puise generation, possibly for irans-
mission from a kigh-powercd microwave source or laser, but not intended for information transpussiwon
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Figure 2. Unit pubse
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along with a map plane (funciinn space) traiectory of the
namics of the state point is represented by h:: dvnar
map plane that successivelyv travels between the map f
tity line x,,, = x.. The refle c" nof the pomt off the map

identity line represents t?*e setting ol the valve of x tothe v .
the last iterate. The svstem point first exits the off state along the dotied
line, and the amplitude builds exponemiaily until it hits the point x, =
172 and iccks back 1o the off state. Note that the system locks precisely to
off because 2ll the bits following the pulse bit are zero.

The spectrum of this pulse is easily computed:
. fos -t
Liw) = 2“ ue

so that

, o xs
Uw)= 3 2fe w12 ¥ 2

and usiag the closed form expression for the power series vields Uwd =
(2 -e“) The power spectruin is thus given by L (w)? =

£
—
h
t
F
]
3
4l
~

The unit pulse waveform and its normalized power spectrum are shawn i
figures 3(a) and (b)Y, resyrecuvelv. Note that t“c power specirum of this
time-limited pulse Is the same as the power spectral easity
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Figure 3. Unit pulse (a)
{a) time sequence,

(b) power spectrum,

and (¢) modulation
waveform.
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ary ergodic signal produced by the nawral dynamics of the svstem. This
equivalence provides a good examnple that two signals need not be the same
to yield the same power spectrum. and shows a deeper mathematical con-
nection between the natural dynamics and the unit pulse. (A natural uajec-
tory of the system can be described as a random superposition of unit
pulses: thus the power spectra can be shown 10 be the same.) An amplitude
modulation waveform generated by this pulse is shown in figure 3(¢), given
by u, (1) = u(r) sin (10 1), where u(2) is the linearly interpolated unit pulse.

More complex pulses can be formed simularly by specifving the pulse siring
P7. Some pulses of length T with different pulse strings are equivalent. This
occurs because any zeros at the beginmng or end of the pulse string do
nothing but shift the time of the pulse, an inconsequential detail in view of
the fact that the precursor string is arbizranily long. Therefore, 1 adopt the
convention that all pulse strings must begin and end in a one. All bits be-
tween the first and last one are then arbimrary, and the number of unique
pulses of length T is given by Ny = 273 Some of these are symbolic time-
reversed copies of another, but the s:ate peint dynamics differ because of
the different numerical significance of the bit positions.
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4. Spectral Shaping

More complex pulses can be described in the context of specrral shaping.
{There are other ways to differentiate between the characteristics of the
pulses. but power spectra have become entrenched as a central congept in
linear signal theory.) The power spectrum also has the appeal of telling
what spectral bandwidth is needed for transmission of a given amount of
pulse energy. It is obvious, at least, that the symbolic descripton is too de-
tailed for differendating global properties of pulscs. For a long pulse length,
T, there are many pulses that are nearly the same in the sense that they ap-
pear quasirandom within the pulsewidth.

During the buildup phase of a pulse, the amplitude grows exponentially.
Because the pulse string is sequendallv amplified by a factor of two, if I let
the ;2al number A, = 0.7, then the pulse amplitude as a function of time,
during the buildup phase, is given by A(1)=A4,2',1<0. At r=0, the
leftmost bit of the pulse string is in the most significant bit (msb) slot of the
binary fraction (the 1/2 place). For ¢ > 0, the truncation caused by the
modulo operation causes the pulse amplitude 10 change in a chaotic fashion
(at least for most pulse strings) unt! the last bit (required to be a 1) 15 in the
msb slot. Then, the pulse amplitude is 1/2, and after the next iteration, the
system again rewurns abruptly to the off state.

k=T-~} o . .
Now let p =3 " a,uk , where uf =27%"1s  is a unit pulse that

reaches its maximum value of 1/2 at r = &, and g, is either zero or one de-
pending on the corresponding bit in the desired pulse string. Following this
procedure, any of the 272 possible pulses can be constructed from the unit
pulses, in a manner roughly analogous to the formation of arbimrary pulses
in linear signal theory from the unit impulse.* In this case, however, it is
important to remember that the superposition is occurring bitwise in the bi-
nary fraction symbolic description of the system state, and that the linear
superposition always adds bits that are never both ones. Thus, in the lan-
guage of arithmetic, no carries ever happen. If one tries 1o use superposition
of two pulses that cause a carry. the linear superposition breaks down.

The possibility of using linear superposition like this helps immensely for
the problem of spectal shaping. Because all comnplex pulses are formed
from unit pulses, the spectrum of an arbitrary pulse can be computed easily.

1t is interesting that the unit impulse from classical signal theory is obtained in the limit of a large symbol alphabet
from the conzept iniroduc :d here of linear superposition of symbol sirings. If a symbol sequence @™ @;?a;> ... from
a symbol alphabet of cardinality M 15 represented in its M-ary fraction revresentation, then the msb siot contaning
my 1s M ames more significant than the next most sign.ficant sloi containing my. Thus, as M becomes very large. he
amplitude of the shift. which is given by 0.mjmym3... remains very close to zero if my = 0. and is close to one if my =
M - 1. The signal amplitude 1s thus largely determined by the msb slot of the shift, and the unit pulse for the M-ary
alphabet is a sharply rising exponential that becomes the classical unit impulse as M — oo
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Thus
P =Y pe =3 (T aut .

Using the expression for the unit pulse, and exchanging the order of the
sum yields

P(w Z“r ‘1 .z::_ St

The sum over time is just the Fourier wansform of the unit pulse phase-
shifted because the peak does not occur at £ = 0. Thus the spectrum becomes

—wk
=T-1 [4
Pl@)=3, [——-——-—2 — J .
The expression for the power spectrum can be computed by noting that the
squared magnitude of the amplitude spectrum is equivaleat to the matrix
expression

2__a'da
IPto)f” = 5-4cos(w)

where ® = [§,,] = FF' is the matrix of products of phase terms ¢y =
e***Y F = [f] is a column vector of phase terms f, = ***, and a = [g,} is the
column vector of unit pulse cosfficients.

This expression for the power spectrum yields an <legant solution to the
problem of spectral shaping. Because any of the g, can be set to zero or one
as desired, the spectrum can be varied over a large range of possible spec-
tra. Noting that the terms in the numerator of |P(«)[| are the components in
a Fourier synthesis of a function, then the problem reduces to the determi-
nation of the Fourier coefficients that will yield a spectrum close to the one
desired. Recall that even the coefficients that are variable can only be zero
or one, so this is not exactly like a classical problem of undetermined coef-
ficients.

{nstead of solving the problem in detail (which would obscure the basic
idea), I will give some specific solutions that alter the spectrum from the
one occurring with the natural dynamics. A simple pulse waveform con-
structed from the unit pulse is given by 1= 1111111111, which is a pulse
of 10 unit pulses in a row. This pulse waveform, along with its power spec-
trum and corresponding amplitude-modulated waveform, is shown in figure
4. The power density has now become concentrated near @ = 0. The pulse
therefore requires much less spectral bandwidth for transmission than either
the unit pulse or the signal produced by the natural dynamics.
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Figure 4. plo- (a)
1111111111 pulse 09
(a) sequence, (b) power 0.8
spectrum, and
{¢) modulation
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Other pulse waveforms can be constructed similarly. Figure § shows the
pulse given by P? = 1010101010, along with its power spectrum and ampli-
tude modulation waveform. (This is a 7 = 9 pu'se because the last bit is
zero.) Note that the power spectrum of the pulse now has significant power
density near w = +. This is caused by the presence of the frequency com-
ponent near a period two orbit of the map. Finally, figure 6 shows the pulse
P'0 = 1100110011, along with its power specrum and amplitude modula-
tion waveform. This pulse comes close to a period four orbit, and the spec-
trum is enhanced near w = /2. The bit patterns indicated by these pulses,
if continued indcefinitely, would cause the system to become locked in a pe-
riodic orbit, pericd two and four, respectively. With very long pulses, the
corresponding Fourier component would become prominent, and would ap-
proach a delta function in the frequency domain. The lage lobe atw =0
visible in all the pulse spectra in this repert would also approach a delt
function. This lobe, represerting the positive offset component of all the
pulses, would correspond to the dc component of the signal for long pulses.
Thus, one can think of the other spectral lines as representing the amplitude
modulation on the dc component of the signal.
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Figure 5. P10 =
1010101010 pulise

(a) sequence, (b) power
spectrum, and

(¢) modulation
waveform.
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Figure 6. P10 = (a) !
1100110011 pulse 0.91
(a) sequence, (b) power 08
spectrum, and 0.7
(c) modulation
waveform. 06
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